
Great Cows, Pythons and
clouds

A few years ago

• Fell out with my fellow directors and shareholders in a
previous business

• Decided to start my own business from scratch (never
done that before)

• Thought I would try my hand at developing new some
new products (somewhat dictated by restrictions of trade
with my previous business)

• Have not seriously done any real engineering (h/w and
s/w design) for many years. Its just like riding a bike isn’t
it? How hard can it be.

• Came up with this idea to develop a device for early
warning for flash flood events

• Very little funds so decided to do most of the work
myself. It was fun!

A new product is conceived

• Needed low cost, low power solution so
chose Microchip PIC microprocessor as
the core of the design
– Highly integrated (great range of integrated

peripherals)
– Low power
– Lots of industry support
– Wide choice of cost effective development

tools/platforms (many in the public domain
space)

But what software language?

Being a very lazy programmer, I looked for a product that
would be easy and quick to get things going. I hate “C”

• I stumbled across Great Cow Graphical Basic. This
looked like an easy way to get back into programming
again.
– Has a novel flow programming GUI + traditional text interface
– Extensive library support for PIC/AVR micro families
– Locally developed (Adelaide Uni student)
– Very affordable ($0)
– Enhanced Basic programming language
– Relatively easy to read and learn
– Produces efficient code (size & speed)
– But, initially was still a bit buggy!!

Great Cow Graphical Basic

I was able to get the first version
developed, sold and into the

field within a mater of months!

My DipStik flood monitoring
solution

New features required

• I now needed to expand the basic product to
include new features:
– Image capture and posting to the cloud
– Remote firmware updates

• Problem - DipStik has very minimal resources:
– 64kbyte Flash PROM for program code
– 3.5k bytes RAM
– 31 level stack
– 4 Mhz clock (to keep power consumption down)
– Only RS232 connection to simple 3G modem (but has

basic level socket support via AT commands)

Cloud Solution?

• As the market requirements were growing more
complex, I needed more computing power.
– Not desirable to scrap existing DipStik design
– Chose to use cloud server to add functionality
– Signed up with Digital Ocean ($5/month)
– Set up minimal Ubuntu server with its own IP address and

domain name (www.dipstik.info)
– Decided to design my own unique comms protocol to fit with

minimal resources on DipStik units
– Found some simple serial cameras that could be easily bolted

onto the existing DipStik design
– Looked at outsourcing server development but ultimately chose

to do the work myself with some advice from MLUG members

Python sockets

Echo server program
import socket

HOST = ‘206.128.37.3’ # Host IP address
PORT = 50007 # Arbitrary non-privileged port

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((HOST, PORT))
s.listen(1)
conn, addr = s.accept()
print 'Connected by', addr
while 1:

data = conn.recv(1024)
if not data: break
conn.send(data)

conn.close()

•Never coded in Python
•Never used sockets
•How hard can it be?

Looks easy doesn’t it!

TCP/IP

• Used TCP/IP sockets as they provide reliable
end to end comms with little application
overhead

• TCP/IP sockets supported on my 3G modems
• Once socket connection established, modem

can run in simple transparent mode (just looks
like direct serial connection)

• Worked really well for capturing image data and
just transferring as one long data stream direct
from the camera (no space in DipStik to store
image data)

Web server public interface

Captured image with overlayed
flood data

Remote firmware download
challenges

• Internet communications has horrible latency
issues

• DipStik needed to securely/reliably write to its
own Flash program memory. A slowish process

• DipStik must always be able to recover without
any user intervention

• Need to split existing DipStik code into
BootLoader and Application areas

• BootLoader must be able to work reliably over
the mobile phone network

Cloud comms in the real world

• Do not underestimate
network latency
– Server in Singapore
– 3G connected Dipstik in

Australia
– Up to 600ms end to end

packet response
– For a small 88k byte file

with 43 byte records, this
would take 20 + mins

– Ouch!!!!
– Not practical for

solar/battery device!

A simple comms solution
• Remove all packet handshaking to get rid of latency issue
• DipStik is fairly dumb and needs some time between packets to

process the data. (During Flash ROM programming the CPU
actually stops working!!!)

• The Solution:
– Add a fixed delay between packets to enable DipStik to do its stuff
– Easiest way to add a fixed delay is to just add redundant stuffing bytes

into the data stream.
– 20 stuffing characters (null padding bytes) equates to a delay of approx

20ms at 9600 bps.
– Data packets are simple ASCII coded (Intel HEX) so easy to add

redundant stuffing bytes.

Final solution

• Linux server code spread across 3 programs to handle:
– DipStik image capture
– Custom web server to enable clients to view images
– Firmware download server to automatically handle code updates

to remote DipStik units.
– All application code uses multithreading to enable simultaneous

device and user connections

• Firmware updates can now be achieved in a matter of
minutes

• As the installed device network grows, the cloud server
solution can easily be upgraded to maintain performance

Peter Stone

www.tuftec.com
peters@tuftec.com

