
time and Unix
background

humans vs time

Our understanding of calendars and dates has changed markedly throughout recorded history.

Being a human construct, calendars are notoriously subject to political manipulation and change. Without going into detail, making
changes to calendars to fix even egregious known bugs are still momentuous disruptions for society when they occur and they
leave their mark in history.

Managing time generally at scales smaller than a day famously didn't really need coordination until the invention of the railway.
Later, the notion of Daylight Savings Time were proposed and adopted, adding to the complexity.

Astronomers have had to manage different definitions for time, finding that the day as measured by the Sun would tend to process
over successive days due to changing position of the Earth and Sun throughout the year.

When atomic clocks were invented it became clear that the Earth did not rotate on a regular period and fixing the length of a day
also needed adjusting every so often. So far, the Earth appears to have slowed slightly and the leap second adjustments have
been positive. There are signs that we might be coming up to needing a negative leap second at some point in the next few years
which will be interesting to watch as there is a push to have general timekeeping do away with the leap second altogether and stick
to the TAI definition of time, based on the atomic clock.

More recently, scientists have had to create calendars for use on other astronomical bodies

computers vs time

The relationship between computer clocks and time started small, localised and without context.

Computers have traditionally used a number of different timers for various internal functions. These manage multiple processes and
subsystems in a way that their actions are coordinated, but generally without any reference to the outside world.

When systems did begin to have their own clock, they relied on being manually set at boot and worked by counting their internal
timer ticks to keep pace as long as they had power. Battery-backed clocks keep reasonably accurate time but still tend to drift,
forcing regular adjustment.

As with general timekeeping, this computer clock inaccuracy wasn't a problem until they are compared to others and it becomes
obvious that they need to be kept in some kind of sync.

Initially, organisations like NIST and CSIRO maintained accurate time and broadcast these via radio to consumers. As computer
networks became more ubiquitous, the Network Time Protocol was used to understand the relative difference between system
clocks and improve accuracy further.

https://en.wikipedia.org/wiki/Calendar_era

https://en.wikipedia.org/wiki/List_of_calendars

https://en.wikipedia.org/wiki/Adoption_of_the_Gregorian_calendar

https://en.wikipedia.org/wiki/List_of_adoption_dates_of_the_Gregorian_calendar_by_country

https://en.wikipedia.org/wiki/Time_zone

https://en.wikipedia.org/wiki/Daylight_saving_time

https://en.wikipedia.org/wiki/24-hour_clock

https://en.wikipedia.org/wiki/Sidereal_time

https://en.wikipedia.org/wiki/Leap_second

https://en.wikipedia.org/wiki/Timekeeping_on_the_Moon

https://en.wikipedia.org/wiki/Timekeeping_on_Mars

https://en.wikipedia.org/wiki/Calendar_era
https://en.wikipedia.org/wiki/List_of_calendars
https://en.wikipedia.org/wiki/Adoption_of_the_Gregorian_calendar
https://en.wikipedia.org/wiki/List_of_adoption_dates_of_the_Gregorian_calendar_by_country
https://en.wikipedia.org/wiki/Time_zone
https://en.wikipedia.org/wiki/Daylight_saving_time
https://en.wikipedia.org/wiki/24-hour_clock
https://en.wikipedia.org/wiki/Sidereal_time
https://en.wikipedia.org/wiki/Leap_second
https://en.wikipedia.org/wiki/Timekeeping_on_the_Moon
https://en.wikipedia.org/wiki/Timekeeping_on_Mars

Later, cheap GPS receivers became commonly used to provide very good sources of time discipline for consumer devices.

computers vs humans
So we have a complex set of human-scale date- and time-setting rules to follow and computers with high-precision monotonic
clocks, now it's time to combine these

Unix time
In the beginning Unix systems traditionally used a clock that recorded seconds since midnight, 1st of January 1970 using a signed,
32-bit integer.

Often called utime or time_t the following time range can be represented:

The 32-bit nature of utime will result in a Y2K-like rollover in 2038 as above, however most systems are already using 64-bit
integers and this will unlikely be a problem in practice (touch wood)

tm
This is a C hash (technically a struct) that holds a "broken down" version of utime . The original looked similar to:

Note that the range for tm_sec is now variously 0-60 or 0-61 (depending on the standard) to allow for a 1-2sec positive leap
second. Note also that tm_isdst indicates whether this time has had DST applied to it.

libc TZ
Rather than set the system clock to local time, Unix systems have traditionally set their clocks to UTC and then calculated the local
time by applying a static offset.

Functions to perform these calculations were added to many implementations of the C library libc , however this wasn't formally
standardised until ANSI C in the late 70s and later POSIX in the mid 80s.

Whether or not to apply DST offset is now usually managed with the timezone database files as discussed below, but most variants
of libc still retain the ability to read and understand a fairly complex TZ format, which grew up over time before the database
approach was widespread.

$ date -d @-2147483647 -Iseconds

1901-12-13T20:45:53+00:00

$

$ date -d @0 -Iseconds

1970-01-01T00:00:00+00:00

$

$ date -d @2147483648 -Iseconds

2038-01-19T03:14:08+00:00

https://en.wikipedia.org/wiki/Unix_time

struct tm {

 int tm_sec; // seconds, range 0 to 59

 int tm_min; // minutes, range 0 to 59

 int tm_hour; // hours, range 0 to 23

 int tm_mday; // day of the month, range 1 to 31

 int tm_mon; // month, range 0 to 11

 int tm_year; // The number of years since 1900

 int tm_wday; // day of the week, range 0 to 6

 int tm_yday; // day in the year, range 0 to 365

 int tm_isdst; // daylight saving time flag

}

https://en.cppreference.com/w/c/chrono/tm

https://en.wikipedia.org/wiki/Unix_time
https://en.cppreference.com/w/c/chrono/tm

For these examples we are assuming the Daylight Savings Rules for Victoria that are in use after 2008, which are:

In this case, the value of the TZ environment variable can be used to indicate when to apply DST offset:

For example, going into DST:

and coming out of DST:

Note that in this example, when converting dates without offset around the changeover into DST, libc can't determine which
02:00am we are talking about (with or without DST) and throws an error.

The second set of dates include the non-DST offset for 02:00am and we get the correct time and offset returned, however times
within the skipped wallclock time behave oddly:

Daylight Savings starts on the first Sunday of October and runs 01:59:59AEST -> 03:00:00AEDT

Daylight Savings finishes on the first Sunday of April and runs 02:59:59AEDT -> 02:00:00AEST

TZ=AEST-10

TZ=AEST-10AEDT

TZ=AEST-10AEDT-11,M10.1.0/2,M4.1.0/3

1. Australian Eastern Standard Timezone, UTC+10h, no DST specified (note the sign of offset)

2. added offset for Australian Eastern Daylight Time, but DST changes follow broken Northern Hemisphere dates

3. added definition for DST changes for 2025 to match rule above

$ export TZ=AEST-10AEDT-11,M10.1.0/2,M4.1.0/3

$

$ date -Iseconds -d 2025-10-05T01:00:00

2025-10-05T01:00:00+10:00

$ date -Iseconds -d 2025-10-05T02:00:00

date: invalid date ‘2025-10-05T02:00:00’

$ date -Iseconds -d 2025-10-05T03:00:00

2025-10-05T03:00:00+11:00

$

$ date -Iseconds -d 2025-10-05T01:59:59+10:00

2025-10-05T01:59:59+10:00

$ date -Iseconds -d 2025-10-05T02:00:00+10:00

2025-10-05T03:00:00+11:00

$ date -Iseconds -d 2025-10-05T03:00:00+11:00

2025-10-05T03:00:00+11:00

$ export TZ=AEST-10AEDT-11,M10.1.0/2,M4.1.0/3

$

$ date -Iseconds -d 2025-04-06T01:59:59

2025-04-06T01:59:59+11:00

$ date -Iseconds -d 2025-04-06T02:00:00

2025-04-06T02:00:00+10:00

$

$ date -Iseconds -d 2025-04-06T02:00:00+11:00

2025-04-06T02:00:00+11:00

$ date -Iseconds -d 2025-04-06T02:59:59+11:00

2025-04-06T02:59:59+11:00

$ date -Iseconds -d 2025-04-06T03:00:00+11:00

2025-04-06T02:00:00+10:00

$ date -Iseconds -d 2025-04-06T03:00:00+10:00

2025-04-06T03:00:00+10:00

The actual dates for changing to and from DST above are only guaranteed to be correct for dates after 2008. If we had wanted to
map dates for (eg) 2007, then the end of Daylight Savings was early:

This would impact our TZ variable as follows:

For reference, had we kept the previous value of TZ (valid for dates from 2008) the last set of commands would return the
following:

Olson/tzdata/zoneinfo database
Clearly having to modify individual system TZ settings by hand to manage Daylight Savings is not workable in practice.

From early 1984 Arthur David Olson began writing code to automate the production of binary tables of timezone offsets and
Daylight Savings changes, in collaboration with a large number of contributors. Paul Eggert has been the maintainer of the
database since 2005.

Because Daylight Savings is an inherently political problem, dates for Daylight Savings changes are typically gazetted by
governments. Before adoption, these announcements need to be distilled and clarified before they can be used. To keep everyone
current, the database is usually updated and released every few months to capture upcoming changes.

$ export TZ=AEST-10AEDT-11,M10.1.0/2,M4.1.0/3

$

$ date -Iseconds -d 2025-10-05T01:59:59+10:00

2025-10-05T01:59:59+10:00

$ date -Iseconds -d 2025-10-05T02:00:00+11:00

2025-10-05T01:00:00+10:00

$ date -Iseconds -d 2025-10-05T03:00:00+11:00

2025-10-05T03:00:00+11:00

Daylight Savings starts on the first Sunday of October and runs 01:59:59AEST -> 03:00:00AEDT

Daylight Savings finishes on the last Sunday of March and runs 02:59:59AEDT -> 02:00:00AEST

$ export TZ=AEST-10AEDT-11,M10.1.0/2,M3.5.0/3

$

$ date -Iseconds -d 2025-03-30T01:59:59

2025-03-30T01:59:59+11:00

$ date -Iseconds -d 2025-03-30T02:00:00

2025-03-30T02:00:00+10:00

$

$ date -Iseconds -d 2025-03-30T02:00:00+11:00

2025-03-30T02:00:00+11:00

$ date -Iseconds -d 2025-03-30T02:59:59+11:00

2025-03-30T02:59:59+11:00

$ date -Iseconds -d 2025-03-30T03:00:00+11:00

2025-03-30T02:00:00+10:00

$ date -Iseconds -d 2025-03-30T03:00:00+10:00

2025-03-30T03:00:00+10:00

$ date -Iseconds -d 2025-03-30T02:00:00+11:00

2025-03-30T02:00:00+11:00

$ date -Iseconds -d 2025-03-30T02:59:59+11:00

2025-03-30T02:59:59+11:00

$ date -Iseconds -d 2025-03-30T03:00:00+11:00

2025-03-30T03:00:00+11:00

$ date -Iseconds -d 2025-03-30T03:00:00+10:00

2025-03-30T04:00:00+11:00

https://en.wikipedia.org/wiki/Tz_database

https://en.wikipedia.org/wiki/Tz_database

Some countries are notorious for their disregard for the lead time required to implement and test changes. This was true of Turkey
in 2015 whose government opted to keep Daylight Savings an extra two weeks to assist with their upcoming election. Unfortunately
this wasn't well publicised and the IATA community were caught somewhat flat-footed. In the end some downstream projects did
not get updated by the changeover date and there was a moderate amount of chaos involved.

Partly due to geography and partly due to history, Australia has had a complex relationship with timezones and with Daylight
Savings - in 2010 the Australian Parliament produced a report underlining the complexity

The files collated in this database use a very simple text format to describe time representation offsets and discontinuities. In many
cases the underlying evidence in support of the change is kept within the source file comments and make for interesting reading
themselves. For example, this discussion on "double daylight savings" applied by Britain during World War II:

https://data.iana.org/time-zones/tz-link.html

https://codeofmatt.com/on-the-timing-of-time-zone-changes/

http://www.bom.gov.au/climate/averages/tables/dst_times.shtml

https://parlinfo.aph.gov.au/parlInfo/download/library/prspub/359V6/upload_binary/359v60.pdf

:

:

Date: 4 Jan 89 08:57:25 GMT (Wed)

From: Jonathan Leffler

[British Summer Time] is fixed annually by Act of Parliament.

If you can predict what Parliament will do, you should be in

politics making a fortune, not computing.

From Chris Carrier (1996-06-14):

I remember reading in various wartime issues of the London Times the

acronym BDST for British Double Summer Time. Look for the published

time of sunrise and sunset in The Times, when BDST was in effect, and

if you find a zone reference it will say, "All times B.D.S.T."

From Joseph S. Myers (1999-09-02):

... some military cables (WO 219/4100 - this is a copy from the

main SHAEF archives held in the US National Archives, SHAEF/5252/8/516)

agree that the usage is BDST (this appears in a message dated 17 Feb 1945).

From Joseph S. Myers (2000-10-03):

On 18th April 1941, Sir Stephen Tallents of the BBC wrote to Sir

Alexander Maxwell of the Home Office asking whether there was any

official designation; the reply of the 21st was that there wasn't

but he couldn't think of anything better than the "Double British

Summer Time" that the BBC had been using informally.

https://www.polyomino.org.uk/british-time/bbc-19410418.png

https://www.polyomino.org.uk/british-time/ho-19410421.png

From Sir Alexander Maxwell in the above-mentioned letter (1941-04-21):

[N]o official designation has as far as I know been adopted for the time

which is to be introduced in May....

I cannot think of anything better than "Double British Summer Time"

which could not be said to run counter to any official description.

From Paul Eggert (2000-10-02):

Howse writes (p 157) 'DBST' too, but 'BDST' seems to have been common

and follows the more usual convention of putting the location name first,

so we use 'BDST'.

:

:

https://data.iana.org/time-zones/tz-link.html
https://codeofmatt.com/on-the-timing-of-time-zone-changes/
http://www.bom.gov.au/climate/averages/tables/dst_times.shtml
https://parlinfo.aph.gov.au/parlInfo/download/library/prspub/359V6/upload_binary/359v60.pdf

Unfortunately this trend for keeping supporting information in the comments resulted in a copyright lawsuit that led to the database
being pulled offline for a while in 2011 until things were eventually settled.

implementation

On Linux systems, compiled binary timezone information is found within /usr/share/zoneinfo in files covering definitions by
general location. The nominal "authoritative" city for the region is usually provided as the file and symbolic links used to direct other
named variant uses as appropriate. For example, here are the current file and links for Australia:

The timezone that the system uses is found either as the content or symlink target of /etc/localtime , for example:

The zic and zdump tools are included with most OS variants, or compile the versions from the tzcode bundle:

dump DST changes
To find the discontinuities in any known timezone, you can use the zdump command. This takes the unrolled binary timezone file
and enumerates the entries. For example:

https://github.com/eggert/tz/blob/main/europe

https://www.eff.org/cases/astrolabe-v-olson

https://www.computerworld.com/article/1548822/astrolabe-withdraws-copyright-suit-over-internet-time-zone-database.html

/usr/share/zoneinfo/Australia/ACT -> Sydney

/usr/share/zoneinfo/Australia/Adelaide

/usr/share/zoneinfo/Australia/Brisbane

/usr/share/zoneinfo/Australia/Broken_Hill

/usr/share/zoneinfo/Australia/Canberra -> Sydney

/usr/share/zoneinfo/Australia/Currie -> Hobart

/usr/share/zoneinfo/Australia/Darwin

/usr/share/zoneinfo/Australia/Eucla

/usr/share/zoneinfo/Australia/Hobart

/usr/share/zoneinfo/Australia/LHI -> Lord_Howe

/usr/share/zoneinfo/Australia/Lindeman

/usr/share/zoneinfo/Australia/Lord_Howe

/usr/share/zoneinfo/Australia/Melbourne

/usr/share/zoneinfo/Australia/NSW -> Sydney

/usr/share/zoneinfo/Australia/North -> Darwin

/usr/share/zoneinfo/Australia/Perth

/usr/share/zoneinfo/Australia/Queensland -> Brisbane

/usr/share/zoneinfo/Australia/South -> Adelaide

/usr/share/zoneinfo/Australia/Sydney

/usr/share/zoneinfo/Australia/Tasmania -> Hobart

/usr/share/zoneinfo/Australia/Victoria -> Melbourne

/usr/share/zoneinfo/Australia/West -> Perth

/usr/share/zoneinfo/Australia/Yancowinna -> Broken_Hill

/etc/localtime -> /usr/share/zoneinfo/Australia/Melbourne

https://www.iana.org/time-zones

https://data.iana.org/time-zones/releases/tzdata2025b.tar.gz

https://data.iana.org/time-zones/releases/tzcode2025b.tar.gz

$ zdump -V -c 2024,2026 Australia/Melbourne

Australia/Melbourne Sat Apr 6 15:59:59 2024 UT = Sun Apr 7 02:59:59 2024 AEDT isdst=1 gmtoff=39600

Australia/Melbourne Sat Apr 6 16:00:00 2024 UT = Sun Apr 7 02:00:00 2024 AEST isdst=0 gmtoff=36000

Australia/Melbourne Sat Oct 5 15:59:59 2024 UT = Sun Oct 6 01:59:59 2024 AEST isdst=0 gmtoff=36000

Australia/Melbourne Sat Oct 5 16:00:00 2024 UT = Sun Oct 6 03:00:00 2024 AEDT isdst=1 gmtoff=39600

https://github.com/eggert/tz/blob/main/europe
https://www.eff.org/cases/astrolabe-v-olson
https://www.computerworld.com/article/1548822/astrolabe-withdraws-copyright-suit-over-internet-time-zone-database.html
https://www.iana.org/time-zones
https://data.iana.org/time-zones/releases/tzdata2025b.tar.gz
https://data.iana.org/time-zones/releases/tzcode2025b.tar.gz

Some variants of zdump don't include the -V or -c options - you can do similar with this command:

converting between timezones

Finding the correct time in another timezone is as simple as:

tzdata file format
For example, this is the initial timezone file for Australia contributed by Keith Edmunds in 1986:

Australia/Melbourne Sat Apr 5 15:59:59 2025 UT = Sun Apr 6 02:59:59 2025 AEDT isdst=1 gmtoff=39600

Australia/Melbourne Sat Apr 5 16:00:00 2025 UT = Sun Apr 6 02:00:00 2025 AEST isdst=0 gmtoff=36000

Australia/Melbourne Sat Oct 4 15:59:59 2025 UT = Sun Oct 5 01:59:59 2025 AEST isdst=0 gmtoff=36000

Australia/Melbourne Sat Oct 4 16:00:00 2025 UT = Sun Oct 5 03:00:00 2025 AEDT isdst=1 gmtoff=39600

$ zdump -v Australia/Melbourne |

> sed -ne '/2024 UT/,/2026 UT/p'

Australia/Melbourne Sat Apr 6 15:59:59 2024 UT = Sun Apr 7 02:59:59 2024 AEDT isdst=1 gmtoff=39600

Australia/Melbourne Sat Apr 6 16:00:00 2024 UT = Sun Apr 7 02:00:00 2024 AEST isdst=0 gmtoff=36000

Australia/Melbourne Sat Oct 5 15:59:59 2024 UT = Sun Oct 6 01:59:59 2024 AEST isdst=0 gmtoff=36000

Australia/Melbourne Sat Oct 5 16:00:00 2024 UT = Sun Oct 6 03:00:00 2024 AEDT isdst=1 gmtoff=39600

Australia/Melbourne Sat Apr 5 15:59:59 2025 UT = Sun Apr 6 02:59:59 2025 AEDT isdst=1 gmtoff=39600

Australia/Melbourne Sat Apr 5 16:00:00 2025 UT = Sun Apr 6 02:00:00 2025 AEST isdst=0 gmtoff=36000

Australia/Melbourne Sat Oct 4 15:59:59 2025 UT = Sun Oct 5 01:59:59 2025 AEST isdst=0 gmtoff=36000

Australia/Melbourne Sat Oct 4 16:00:00 2025 UT = Sun Oct 5 03:00:00 2025 AEDT isdst=1 gmtoff=39600

Australia/Melbourne Sat Apr 4 15:59:59 2026 UT = Sun Apr 5 02:59:59 2026 AEDT isdst=1 gmtoff=39600

$ env TZ=America/Toronto date -Iseconds -d 2025-08-01T09:00:00

2025-08-01T09:00:00-04:00

$ env TZ=Pacific/Auckland date -Iseconds -d 2025-08-01T09:00:00-04:00

2025-08-02T01:00:00+12:00

Australian Data (for states with DST), standard rules

Rule NAME FROM TO TYPE IN ON AT SAVE LETTER/S

Rule Aus 1971 2037 - Oct lastSun 2:00 1:00 -

Rule Aus 1972 only - Feb 27 3:00 0 -

Rule Aus 1973 2037 - Mar Sun>=1 3:00 0 -

#Australian Data, Vic (and NSW except for a variation in 83? that I[kre] forget)

Rule Aus-Vic 1971 2037 - Oct lastSun 2:00 1:00 -

Rule Aus-Vic 1972 only - Feb 27 3:00 0 -

Rule Aus-Vic 1973 1985 - Mar Sun>=1 3:00 0 -

is this really forever, or just 86??

Rule Aus-Vic 1986 2037 - Mar Sun<=21 3:00 0 -

Australia - something of a turmoil here

Zone NAME GMTOFF RULES FORMAT

Zone EST 10:00 Aus-Vic EST # rule change, 1986

Zone Tasmania 10:00 Aus EST # still the standard rules?

Zone Queensland 10:00 - EST # Queensland - no DST

Zone CST 9:30 Aus CST # still the standard rules?

Zone North 9:30 - CST # Northern Territory - no DST

Zone WST 8:00 - WST # No DST ever, this is simple...

https://github.com/eggert/tz

https://github.com/eggert/tz

creating a timezone file
Apart from describing the normal wall-clock time for various geographical regions, there are a few niche moments where having a
"timezone" that you can easily move dates and times between it and the "real world" can be very very useful.

When any activity has a nominal "day" that crosses local calendar midnight there will be confusion when referring to things that
occur near midnight because we need to do extra work to determine which calendar date that belongs to.

Airlines normally resolve this by always referring to their flights both in UTC (which has no DST to apply) and airport localtime (most
of which do observe DST) which is an established practice that everyone understands and works because it's more-or-less
universal.

Unfortunately for other applications there may still be a need to collate all the content for a "day" and somehow ignore the calendar
dates that this spans.

An example of this are train timetables: services might start at (eg) localtime 04:00 and extend to 02:00 the following day - in this
case, a timezone with a "midnight" set to wall-clock time 03:00 would help to keep all the services for that day on the same date as
they would then fall between 01:00 and 23:00 in this nominal "train timetable" zone.

a worked example

The example we will follow here is that for Melbourne community radio station 3RRR which has a similar problem. They broadcast
continuously throughout the year and in this case, their "broadcast clock" starts each day at 06:00am[1].

[1] their "broadcast" week also starts 06:00 on Monday however for this example we're going to stick to just the times

Here, any programs that broadcast prior to 06:00 on any day are deemed to be part of the previous day. For example their program
schedule for Saturday 2025-04-26 looks like the following in the Australia/Melbourne timezone (UTC+10h offset):

After mapping into our nominal timezone, the schedule should look like this (now with a UTC+4h offset):

https://github.com/eggert/tz/blob/main/australasia

file:doc/RRR206-The-Trip-Summer-2024-GRID.pdf

https://www.rrr.org.au/explore/schedule

2025-04-26T06:00:00+10:00 Vital Bits

2025-04-26T09:00:00+10:00 Off The Record

2025-04-26T12:00:00+10:00 Press Colour

2025-04-26T14:00:00+10:00 Twang

2025-04-26T16:00:00+10:00 Stolen Moments

2025-04-26T18:00:00+10:00 Beat Orgy

2025-04-26T20:00:00+10:00 Velvet Haze

2025-04-26T22:00:00+10:00 Livewire

2025-04-27T00:00:00+10:00 The Party Show

2025-04-27T02:00:00+10:00 The Graveyard Shift

2025-04-27T04:00:00+10:00 The Graveyard Shift

2025-04-27T06:00:00+10:00 Vital Bits

2025-04-26T00:00:00+04:00 Vital Bits

2025-04-26T03:00:00+04:00 Off The Record

2025-04-26T06:00:00+04:00 Press Colour

2025-04-26T08:00:00+04:00 Twang

2025-04-26T10:00:00+04:00 Stolen Moments

2025-04-26T12:00:00+04:00 Beat Orgy

2025-04-26T14:00:00+04:00 Velvet Haze

2025-04-26T16:00:00+04:00 Livewire

2025-04-26T18:00:00+04:00 The Party Show

2025-04-26T20:00:00+04:00 The Graveyard Shift

https://github.com/eggert/tz/blob/main/australasia
https://www.rrr.org.au/explore/schedule

We can confirm that these long-form iso8601 dates map to the same utime using date :

We'll start with a simple zoneinfo file for Victoria where 3RRR is based:

For this zone definition, daylight savings starts at 02:00 on the first Sunday of October and ends at 03:00 on the first Sunday of
April.

Rather than stick with slightly confusing AEDT / AEST I've opted to confuse things further by using short names VicW for non-DST
"Winter" time and VicS for DST "Summer" time

When zic runs over this file it will assume that it can write output directly into /usr/share/zoneinfo/Vic which means we'll
need to use sudo:

Confirm that it's nominally correct:

We can also confirm using zdump :

2025-04-26T22:00:00+04:00 The Graveyard Shift

2025-04-27T00:00:00+04:00 Vital Bits

$ date -d '2025-04-26T06:00:00+10:00' +%s

1745611200

$ date -d '2025-04-26T00:00:00+04:00' +%s

1745611200

simplistic timezone rules for Victoria - valid from 2008 only

Rule name from to type in on at save letters

Rule Vic 2008 max - October Sun>=1 2:00 1:00 S

Rule Vic 2008 max - April Sun>=1 3:00 0:00 W

Zone name stdoff rules format

Zone Vic 10:00 Vic Vic%s

$ zic etc/vic.zi

zic: Can't remove /usr/share/zoneinfo/Vic: Permission denied

$ sudo zic etc/vic.zi

[sudo] password for mjch:

$ env TZ=Australia/Melbourne date ; env TZ=Vic date

Sun Apr 27 13:54:49 AEST 2025

Sun Apr 27 13:54:49 VicW 2025

$ env TZ=Australia/Melbourne date -Iseconds ; env TZ=Vic date -Iseconds

2025-04-27T13:54:39+10:00

2025-04-27T13:54:39+10:00

$ zdump -V -c 2024,2026 Australia/Melbourne Vic |

> sort -k1.22

Australia/Melbourne Sat Apr 5 15:59:59 2025 UT = Sun Apr 6 02:59:59 2025 AEDT isdst=1 gmtoff=39600

Vic Sat Apr 5 15:59:59 2025 UT = Sun Apr 6 02:59:59 2025 VicS isdst=1 gmtoff=39600

Australia/Melbourne Sat Apr 5 16:00:00 2025 UT = Sun Apr 6 02:00:00 2025 AEST isdst=0 gmtoff=36000

Vic Sat Apr 5 16:00:00 2025 UT = Sun Apr 6 02:00:00 2025 VicW isdst=0 gmtoff=36000

Australia/Melbourne Sat Apr 6 15:59:59 2024 UT = Sun Apr 7 02:59:59 2024 AEDT isdst=1 gmtoff=39600

Vic Sat Apr 6 15:59:59 2024 UT = Sun Apr 7 02:59:59 2024 VicS isdst=1 gmtoff=39600

Australia/Melbourne Sat Apr 6 16:00:00 2024 UT = Sun Apr 7 02:00:00 2024 AEST isdst=0 gmtoff=36000

Vic Sat Apr 6 16:00:00 2024 UT = Sun Apr 7 02:00:00 2024 VicW isdst=0 gmtoff=36000

Australia/Melbourne Sat Oct 4 15:59:59 2025 UT = Sun Oct 5 01:59:59 2025 AEST isdst=0 gmtoff=36000

Note: This "sort" is sorting ASCIIbetically on each line from Sat which really only helps to put entries for the same UTC time
together for easier eyeball matching

Our initial hand check earlier identified that the timezone offset we need is really just UTC+4h to our Victorian UTC+10h offset.
Putting this into our zoneinfo definition:

... compile and install, then check:

After this change, the UTC times don't match and things no longer line up. We need to make the same offset adjustment to the time
when DST changes. In our initial zone definition, these were 02:00 and 03:00 but zic knows how to deal with negative change
times, so:

Vic Sat Oct 4 15:59:59 2025 UT = Sun Oct 5 01:59:59 2025 VicW isdst=0 gmtoff=36000

Australia/Melbourne Sat Oct 4 16:00:00 2025 UT = Sun Oct 5 03:00:00 2025 AEDT isdst=1 gmtoff=39600

Vic Sat Oct 4 16:00:00 2025 UT = Sun Oct 5 03:00:00 2025 VicS isdst=1 gmtoff=39600

Australia/Melbourne Sat Oct 5 15:59:59 2024 UT = Sun Oct 6 01:59:59 2024 AEST isdst=0 gmtoff=36000

Vic Sat Oct 5 15:59:59 2024 UT = Sun Oct 6 01:59:59 2024 VicW isdst=0 gmtoff=36000

Australia/Melbourne Sat Oct 5 16:00:00 2024 UT = Sun Oct 6 03:00:00 2024 AEDT isdst=1 gmtoff=39600

Vic Sat Oct 5 16:00:00 2024 UT = Sun Oct 6 03:00:00 2024 VicS isdst=1 gmtoff=39600

simplistic timezone rules for 3RRR - valid from 2008 only

Rule name from to type in on at save letters

Rule RRR 2008 max - October Sun>=1 2:00 1:00 S

Rule RRR 2008 max - April Sun>=1 3:00 0:00 W

Zone name stdoff rules format

Zone RRR 4:00 RRR RRR%s

$ sudo zic etc/rrr.zi

$ zdump -V -c 2024,2026 Australia/Melbourne RRR |

> sort -k1.22

Australia/Melbourne Sat Apr 5 15:59:59 2025 UT = Sun Apr 6 02:59:59 2025 AEDT isdst=1 gmtoff=39600

Australia/Melbourne Sat Apr 5 16:00:00 2025 UT = Sun Apr 6 02:00:00 2025 AEST isdst=0 gmtoff=36000

RRR Sat Apr 5 21:59:59 2025 UT = Sun Apr 6 02:59:59 2025 RRRS isdst=1 gmtoff=18000

RRR Sat Apr 5 22:00:00 2025 UT = Sun Apr 6 02:00:00 2025 RRRW isdst=0 gmtoff=14400

Australia/Melbourne Sat Apr 6 15:59:59 2024 UT = Sun Apr 7 02:59:59 2024 AEDT isdst=1 gmtoff=39600

Australia/Melbourne Sat Apr 6 16:00:00 2024 UT = Sun Apr 7 02:00:00 2024 AEST isdst=0 gmtoff=36000

RRR Sat Apr 6 21:59:59 2024 UT = Sun Apr 7 02:59:59 2024 RRRS isdst=1 gmtoff=18000

RRR Sat Apr 6 22:00:00 2024 UT = Sun Apr 7 02:00:00 2024 RRRW isdst=0 gmtoff=14400

Australia/Melbourne Sat Oct 4 15:59:59 2025 UT = Sun Oct 5 01:59:59 2025 AEST isdst=0 gmtoff=36000

Australia/Melbourne Sat Oct 4 16:00:00 2025 UT = Sun Oct 5 03:00:00 2025 AEDT isdst=1 gmtoff=39600

RRR Sat Oct 4 21:59:59 2025 UT = Sun Oct 5 01:59:59 2025 RRRW isdst=0 gmtoff=14400

RRR Sat Oct 4 22:00:00 2025 UT = Sun Oct 5 03:00:00 2025 RRRS isdst=1 gmtoff=18000

Australia/Melbourne Sat Oct 5 15:59:59 2024 UT = Sun Oct 6 01:59:59 2024 AEST isdst=0 gmtoff=36000

Australia/Melbourne Sat Oct 5 16:00:00 2024 UT = Sun Oct 6 03:00:00 2024 AEDT isdst=1 gmtoff=39600

RRR Sat Oct 5 21:59:59 2024 UT = Sun Oct 6 01:59:59 2024 RRRW isdst=0 gmtoff=14400

RRR Sat Oct 5 22:00:00 2024 UT = Sun Oct 6 03:00:00 2024 RRRS isdst=1 gmtoff=18000

simplistic timezone rules for 3RRR - valid from 2008 only

Rule name from to type in on at save letters

Rule RRR 2008 max - October Sun>=1 -4:00 1:00 S

Rule RRR 2008 max - April Sun>=1 -3:00 0:00 W

Zone name stdoff rules format

Zone RRR 4:00 RRR RRR%s

Compile and test:

Now things match and we can convert between an "RRR" time and a wallclock time for Melbourne with the same Daylight Savings
change dates.

fine-tuning the DST changeover time

Unfortunately, this isn't quite the end of the story - we still have to adjust the DST changeover time to match RRR practice and
avoid impacting two programs The Party Show which concludes Sunday morning at 02:00 and The Graveyard Shift that runs
from 02:00 to 06:00 most days of the week.

Given the break between shows and the Daylight Savings time change coincide, this has the effect of invalidating the endpoint for
the show heading into Daylight Savings if we try to rely on our timezone to Do The Right Thing - we can of course put in an
absolute offset from UTC to fix this, but that's not the point:

While The Party Show is a regular 2hour show, The Graveyard Shift is mainly used for training purposes. Rather than interrupt
regular programming, 3RRR choose to absorb the wayward hour within The Graveyard Shift making it 3 or 5 hours as needed
since the impact will be reduced.

By shifting the DST change back one second we achieve the result we're looking for:

We can use faketime to confirm the behaviour at the changover:

$ zdump -V -c 2024,2026 Australia/Melbourne RRR | sort -k1.22

RRR Sat Apr 5 15:59:59 2025 UT = Sat Apr 5 20:59:59 2025 RRRS isdst=1 gmtoff=18000

Australia/Melbourne Sat Apr 5 15:59:59 2025 UT = Sun Apr 6 02:59:59 2025 AEDT isdst=1 gmtoff=39600

RRR Sat Apr 5 16:00:00 2025 UT = Sat Apr 5 20:00:00 2025 RRRW isdst=0 gmtoff=14400

Australia/Melbourne Sat Apr 5 16:00:00 2025 UT = Sun Apr 6 02:00:00 2025 AEST isdst=0 gmtoff=36000

RRR Sat Apr 6 15:59:59 2024 UT = Sat Apr 6 20:59:59 2024 RRRS isdst=1 gmtoff=18000

Australia/Melbourne Sat Apr 6 15:59:59 2024 UT = Sun Apr 7 02:59:59 2024 AEDT isdst=1 gmtoff=39600

RRR Sat Apr 6 16:00:00 2024 UT = Sat Apr 6 20:00:00 2024 RRRW isdst=0 gmtoff=14400

Australia/Melbourne Sat Apr 6 16:00:00 2024 UT = Sun Apr 7 02:00:00 2024 AEST isdst=0 gmtoff=36000

RRR Sat Oct 4 15:59:59 2025 UT = Sat Oct 4 19:59:59 2025 RRRW isdst=0 gmtoff=14400

Australia/Melbourne Sat Oct 4 15:59:59 2025 UT = Sun Oct 5 01:59:59 2025 AEST isdst=0 gmtoff=36000

RRR Sat Oct 4 16:00:00 2025 UT = Sat Oct 4 21:00:00 2025 RRRS isdst=1 gmtoff=18000

Australia/Melbourne Sat Oct 4 16:00:00 2025 UT = Sun Oct 5 03:00:00 2025 AEDT isdst=1 gmtoff=39600

RRR Sat Oct 5 15:59:59 2024 UT = Sat Oct 5 19:59:59 2024 RRRW isdst=0 gmtoff=14400

Australia/Melbourne Sat Oct 5 15:59:59 2024 UT = Sun Oct 6 01:59:59 2024 AEST isdst=0 gmtoff=36000

RRR Sat Oct 5 16:00:00 2024 UT = Sat Oct 5 21:00:00 2024 RRRS isdst=1 gmtoff=18000

Australia/Melbourne Sat Oct 5 16:00:00 2024 UT = Sun Oct 6 03:00:00 2024 AEDT isdst=1 gmtoff=39600

$ env TZ=Australia/Melbourne date -d '2024-10-06T02:00:00'

date: invalid date ‘2024-10-06T02:00:00’

$ env TZ=RRR date -d '2024-10-05T20:00:00'

date: invalid date ‘2024-10-05T20:00:00’

simplistic timezone rules for 3RRR - valid from 2008 only

Rule name from to type in on at save letters

Rule RRR 2008 max - October Sun>=1 -3:59:59 1:00 S

Rule RRR 2008 max - April Sun>=1 -2:59:59 0:00 W

Zone name stdoff rules format

Zone RRR 4:00 RRR RRR%s

$ faketime '2024-10-06 01:59:40+1000' bash

$ while sleep 1 ; do

> echo "$(env TZ=Australia/Melbourne date -Iseconds) - $(env TZ=RRR date -Iseconds)"

and same again coming out of daylight savings:

So now The Party Show always runs from 18:00:00 to 20:00:00 in the RRR timezone and is always 2 hours long:

Same when exiting Daylight Savings:

> done

:

:

2024-10-06T01:59:57+10:00 - 2024-10-05T19:59:57+04:00

2024-10-06T01:59:58+10:00 - 2024-10-05T19:59:58+04:00

2024-10-06T01:59:59+10:00 - 2024-10-05T19:59:59+04:00

2024-10-06T03:00:00+11:00 - 2024-10-05T20:00:00+04:00

2024-10-06T03:00:01+11:00 - 2024-10-05T21:00:01+05:00

2024-10-06T03:00:02+11:00 - 2024-10-05T21:00:02+05:00

2024-10-06T03:00:03+11:00 - 2024-10-05T21:00:03+05:00

:

:

$ faketime '2025-04-06 02:59:40+1100' bash

$ while sleep 1 ; do

> echo "$(env TZ=Australia/Melbourne date -Iseconds) - $(env TZ=RRR date -Iseconds)"

> done

:

:

2025-04-06T02:59:57+11:00 - 2025-04-05T20:59:57+05:00

2025-04-06T02:59:58+11:00 - 2025-04-05T20:59:58+05:00

2025-04-06T02:59:59+11:00 - 2025-04-05T20:59:59+05:00

2025-04-06T02:00:00+10:00 - 2025-04-05T20:00:00+04:00

2025-04-06T02:00:01+10:00 - 2025-04-05T20:00:01+04:00

2025-04-06T02:00:02+10:00 - 2025-04-05T20:00:02+04:00

2025-04-06T02:00:03+10:00 - 2025-04-05T20:00:03+04:00

:

:

$ # The Party Show - week prior to DST change

$ expr $(date -d '2024-09-29T20:00:00' +%s) - $(date -d '2024-09-29T18:00:00' +%s)

7200

$ # The Graveyard Shift

$ expr $(date -d '2024-09-30T00:00:00' +%s) - $(date -d '2024-09-29T20:00:00' +%s)

14400

:

:

$ # The Party Show - night of DST change

$ expr $(date -d '2024-10-05T20:00:00' +%s) - $(date -d '2024-10-05T18:00:00' +%s)

7200

$ # The Graveyard Shift - loses 1hour due to change

$ expr $(date -d '2024-10-06T00:00:00' +%s) - $(date -d '2024-10-05T20:00:00' +%s)

10800

:

:

$ # The Party Show - week after DST change

$ expr $(date -d '2024-10-13T20:00:00' +%s) - $(date -d '2024-10-13T18:00:00' +%s)

7200

$ # The Graveyard Shift

$ expr $(date -d '2024-10-14T00:00:00' +%s) - $(date -d '2024-10-13T20:00:00' +%s)

14400

PostgreSQL

The absolute best thing about having your own timezone is getting exactly the same behaviour in other tools with no extra work. To
demonstrate this, here are the same examples above in a PostgreSQL session:

$ # The Party Show - week prior to DST change

$ expr $(date -d '2025-03-29T20:00:00' +%s) - $(date -d '2025-03-29T18:00:00' +%s)

7200

$ # The Graveyard Shift

$ expr $(date -d '2025-03-30T00:00:00' +%s) - $(date -d '2025-03-29T20:00:00' +%s)

14400

:

:

$ # The Party Show - night of DST change

$ expr $(date -d '2025-04-05T20:00:00' +%s) - $(date -d '2025-04-05T18:00:00' +%s)

7200

$ # The Graveyard Shift - gains 1hour due to change

$ expr $(date -d '2025-04-06T00:00:00' +%s) - $(date -d '2025-04-05T20:00:00' +%s)

18000

:

:

$ # The Party Show - week after DST change

$ expr $(date -d '2025-04-12T20:00:00' +%s) - $(date -d '2025-04-12T18:00:00' +%s)

7200

$ # The Graveyard Shift

$ expr $(date -d '2025-04-13T00:00:00' +%s) - $(date -d '2025-04-12T20:00:00' +%s)

14400

$ psql -A -t

psql (14.17 (Ubuntu 14.17-0ubuntu0.22.04.1))

Type "help" for help.

mjch=> set time zone 'RRR';

SET

mjch=> show time zone;

RRR

:

:

mjch=> -- The Party Show - week prior to DST change

mjch=> select '2024-09-29T20:00:00'::timestamptz - '2024-09-29T18:00:00'::timestamptz;

02:00:00

mjch=> -- The Graveyard Shift

mjch=> select '2024-09-30T00:00:00'::timestamptz - '2024-09-29T20:00:00'::timestamptz;

04:00:00

:

:

mjch=> -- The Party Show - night of DST change

mjch=> select '2024-10-05T20:00:00'::timestamptz - '2024-10-05T18:00:00'::timestamptz;

02:00:00

mjch=> -- The Graveyard Shift - loses 1hour due to change

mjch=> select '2024-10-06T00:00:00'::timestamptz - '2024-10-05T20:00:00'::timestamptz;

03:00:00

:

:

mjch=> -- The Party Show - week after DST change

mjch=> select '2024-10-13T20:00:00'::timestamptz - '2024-10-13T18:00:00'::timestamptz;

02:00:00

questions?
Thanks for your attention.

mjch=> -- The Graveyard Shift

mjch=> select '2024-10-14T00:00:00'::timestamptz - '2024-10-13T20:00:00'::timestamptz;

04:00:00

:

:

mjch=> -- The Party Show - week prior to DST change

mjch=> select '2025-03-29T20:00:00'::timestamptz - '2025-03-29T18:00:00'::timestamptz;

02:00:00

mjch=> -- The Graveyard Shift

mjch=> select '2025-03-30T00:00:00'::timestamptz - '2025-03-29T20:00:00'::timestamptz;

04:00:00

:

:

mjch=> -- The Party Show - night of DST change

mjch=> select '2025-04-05T20:00:00'::timestamptz - '2025-04-05T18:00:00'::timestamptz;

02:00:00

mjch=> -- The Graveyard Shift - gains 1hour due to change

mjch=> select '2025-04-06T00:00:00'::timestamptz - '2025-04-05T20:00:00'::timestamptz;

05:00:00

:

:

mjch=> -- The Party Show - week after DST change

mjch=> select '2025-04-12T20:00:00'::timestamptz - '2025-04-12T18:00:00'::timestamptz;

02:00:00

mjch=> -- The Graveyard Shift

mjch=> select '2025-04-13T00:00:00'::timestamptz - '2025-04-12T20:00:00'::timestamptz;

04:00:00

