

Using Q editor macros to generate
preprocessed Source Code

without headers

Part 1: a basic implementation

Steps involved
● “Instrument” source code with comments

showing where the headers are
● Build from instrumented source and keep the

preprocessed files
● Edit header lines out of preprocessed files
● (on Day 3) Generate a shadow directory tree

Implementation (1/4)
● Create a new VCS branch to work in
● Change to the new branch
● Instrument the source (insert a cut here comment

after the last #include in each file):
find . -name '*.c'|xargs q -oniu,cpp.qm^J^N2

Implementation (2/4)
● Set up special build flags (temps/ is an example):
CFLAGS='-P -C -dumpdir temps/ -save-temps' ./configure

-P suppresses line numbers; -C keeps comments

(could use -CC to keep comments in macros)
● Clear the decks:
make -j$(($(nproc)+1)) clean;rm -rf temps; mkdir temps

Implementation (3/4)
● Do the build:
make -j$(($(nproc)+1))

● Remove unwanted assembler files:
rm temps/*.s

● You don’t want binaries either:
make -j$(($(nproc)+1)) clean

Implementation (4/4)
● Remove headers from .i files:
q -oiu,cpp.qm^J^N3 temps/*.i

If the last #include was #ifdef’d out, the cut
here comment will be gone also. Need to edit
out #include file contents manually later.

Compare files
● Suggest using tkdiff to easily skip over

uninteresting diffs
● cpp mangles white space a lot, so ignore

whitespace and blank lines (e.g. diff -Wb)

Using Q editor macros to generate
preprocessed Source Code

without headers

Part 2: dealing with included .c files

Where we got to last time
Delete everything up to end of last #include

(actually deletes 1 line extra, fixed later)

Keep lines before 1st #include
take 1: Add a “KEEP TO HERE” comment

Keep lines before 1st #include
take 2: Insert a “CODE STARTS” comment

looks good

Original Experts Exchange question

slightly further on...

Did that. First problem: if the last #include is #ifdef’d out, so is
immediately following “CUT HERE” comment.
Also discovered that some .c files #include other .c files

Need better marker comments
● 3 components:

1 Token, to easily find next marker. Must not occur in original
source

2 Marker type, single word (no spaces) e.g. KEEP2HERE

3 Source Path, originally so diff doesn’t get false matches. Turns
out to be useful for other reasons as well.

Example:

/* >%---- CODE_STARTS exec_alu_opcode.c */

Invite Manual Edit
You see this

(quick live demo)

Need more logic to deal with
included .c files

● Detect already-processed files (for
development)

● May get CUT_HERE or CODE_STARTS after
KEEP2HERE

● And so on ...

1534
CUT HERE

(in original file)
(no action)

1527
CODE STARTS

(no action)

1524
CUT HERE

delete intervening lines

1520
KEEP TO HERE

remember line number

1516
CODE STARTS

delete preceding lines

1505
Next file

found on line 1
no save

1525
KEEP TO HERE

remember line number

No more markers
(no #includes)

No more markers
(last #include was

#ifdeffed out)

1507
User deletes lines

#include *.c

1517
CODE STARTS

delete intervening lines

no more markers
(normal EOF)

no #includes
in this .c file

1526
CUT HERE

delete intervening lines

no #includes
in this .c file
and no more

included .c files

no more
included
.c files

^N3:- process .i files
state diagram (sort-of)

Challenges from phoffric
● All user .h files get their macros expanded to

form .ih files.
● A mirror folder structure matching the liquid-dsp

folder structure is defined and the .i and the .ih
files are just named .c and .h (but having no
macros).

Challenges from phoffric (continued)
● Difficult (and negates some of the above goals):

Create separate sibling folders if shared files (.h
or proto) take on different content as a result of
the macros being expanded differently as a
result of some earlier macro expansion.

Using Q editor macros to generate
preprocessed Source Code

without headers

Part 3: create a shadow tree to diff against

Make a “Master Shadow” tree
● New macro ^N+ creates the shadow tree:
 rm -rf shadow; q -oiu,cpp.qm^J^N+ temps/*.i

● Each included .c file (proto.c file) is written out to a
file named <proto.c file>.<basename including file .c>.
Proto.c file is removed from including file.

● With this naming scheme, can create a shadow tree
with any combination of expanded proto.c files.

1537
Next file

1541
CODE STARTS

Store destination path
Store code_starts line#

no more markers
(normal EOF)

save file

1544
KEEP TO HERE

1545
CUT HERE

do included
.c file stuff

no more markers
(normal EOF)

1543
CODE STARTS

1553
CUT HERE

1545
CUT HERE

save file

1551
CODE STARTS

1552
KEEP TO HERE

1554
CUT HERE

1553
CUT HERE

do included
.c file stuff

If included file already exists, rename it with backup suffix
Write out included file and delete it from including file
If we made a backup, compare and delete if same else ask
user to take action

Included .c file stuff

^N+:- make shadow
directory from .i files

It’s all shell scripting from now on
● Eventual plan is to have proto.c files as

symlinks so can tell from ls -l where they came
from.

● But first, check for proto.c files that are only
#included once. These can be safely mv’d into
place.

find shadow -type f ! -name '*.c'|rev|cut -d. -f2-|cut -d/ -
f1|rev|sort -u >p1
cat p1|glb -v '\.c$'|rev|cut -d. -f2-|cut -d/ -f1|rev|sort -
u>p1a
cat p1|glb '\.c$' >p2
cat p1a >>p2
(cd shadow; for i in $(cat ../p2);do if [$(l $i|wc -l) -eq
1]; then echo $i;fi;done) >u
rm -rf shadow1
cp -a shadow shadow1
(cd shadow1; for i in $(cat ../u); do j=$(l $i); (cd $(dirname
$j); mv -iv $(basename $j) $i) done)

Commands to make shadow1/
shadow1/ has a number of proto.c files in place because they never change
(except perhaps with different ./configure options, but we’re not going there).
Will use shadow1/ as a template to build individual shadow trees.

Create sample tree sy1/
● Function to create individaul .proto.c files:

vm(){ (while [$# -gt 0]; do (cd $(dirname $1);ln -s $(basename $1) $
(basename $(echo ${1/.c.//}|rev|cut -d/ -f2-|rev).c)); shift; done); }

VM() can be used with wildcards, e.g.
vm src/buffer/src/*.proto.c.bufferf

which picks up cbuffer.proto.c, wdelay.proto.c &
window.proto.c.

● Function to compare created tree with original:
difcpp(){ find -D exec src -type d \(-name tests -o -name bench \) -prune -o
-name '*.c' -exec diff -wB {} $1/{} \; 2>&1|glb -v "^DebugExec: process"|k; }

Commands to populte sy1/
rm -rf sy1; cp -a shadow1 sy1; cd sy1

vm src/agc/src/agc.proto.c.agc_crcf

vm src/fft/src/*.proto.c.spgramcf

vm src/filter/src/*.c.filter_rrrf

vm src/framing/src/*sync.proto.c.*sync_cccf

vm src/buffer/src/*.proto.c.buffercf

vm src/equalization/src/*.proto.c.equalizer_rrrf

vm src/multichannel/src/firpfbch.proto.c.firpfbch_crcf

vm src/matrix/src/*.c.matrixc

vm src/math/src/poly.*.proto.c.polyf

vm src/quantization/src/quantizer.proto.c.quantizercf

vm src/matrix/src/smatrix.proto.c.smatrixi

vm src/vector/src/vector_add.proto.c.vectorcf_add.port

vm src/vector/src/vector_mul.proto.c.vectorf_mul.port

vm src/vector/src/vector_norm.proto.c.vectorcf_norm.port

vm src/vector/src

cd ..

Compare w/original source
● There is a DebugExec line between each file

Make sy2/ with 1 changed vm

Compare sy1/ and sy2/
● cbuffer.proto.c, wdelay.proto.c & window.proto.c

are changed.

Resources
● cpp.qm (Q Macro file)
● liquid-dsp (the project with included .c files)

glb(){ grep -E --line-buffered "$@"; }
l(){ find . -depth \(-name "*"$1"*" -o -name ".*"$1"*" \) -print; }
k(){ less "$@"; }
diffdir(){ opts=""; while [$(echo -- "$1"|cut -c4) = '-']; do opts="$opts $1"; shift; done;
 if [-z "$1" -o -z "$2"]; then echo "Usage:- $(basename "$0") [diff opts] <dir1> <dir to be compared to
dir1>"; return 1; fi
 find "$1" -type d -exec sh -c "diff $opts \"{}\" \"\$(echo \"{}\" | sed s?^\"$1\"?\"$2\"?)\"" \; 2>&1|
glb -v '^Common subdirectories: '; }

https://raw.githubusercontent.com/duncan-roe/q/master/contrib/cpp.qm
https://github.com/jgaeddert/liquid-dsp

